Automatic Identification of Spoken Names and Addresses – and why we should abolish account numbers!

> Melvyn Hunt Novauris UK

No doubt you know your own phone numbers and car registration number, BUT what about your:

- Credit card nos.
- Bank account nos.
- Mortgage no.
- □ Social Security no.
- □ Car insurance policy no.
- □ House ins. policy no.
- Medical ins. policy no.

- □ Passport no.
- □ Electricity account no.
- Gas account no.
- □ Water account no.
- Telephone account no.
- Warranty nos. on countless items

I don't know any of these!

What I never forget is:

- My own name
- Where I live
- These items are unique identifiers for me – and for everyone else
- They are all we should ever need to identify ourselves

But there are a few of problems with names and addresses:

- Humans are bad at taking down names and addresses quickly and accurately on the phone
 - and in English, increasing use of offshore operators is making the problem worse
- Machine systems work more easily with index numbers
 - and the designers of such systems consequently impose index numbers on us humans
- Until recently machines were even worse than humans at taking down names and addresses

The good news is:

- Machines can now identify names and addresses spoken in a single utterance
 - Provided that these names and addresses are available in a database
- □ And they can do it:
 - much faster than a human
 - much more reliably than a human
 - and without needing to spell anything

This means that:

- We could abolish user-unfriendly account numbers
 - even if computers still represent individuals internally with numbers
- Call centres currently needing human operators to take down names and addresses can now be automated

The rest of this talk covers...

- □ Feasibility of name & address recognition
 - To justify the claims I just made
- Advantages of single-utterance input
- Some immediate applications
- Technology for spoken database access
- Relationship to other ASR tasks
- Recognition of shorter inputs
- Importance of confidence measures
- Invitation to try the demos on our stand

Our Feasibility Tests

- To develop and test our capabilities, we needed:
 - A (US) name-and-address database
 - We made a semi-artificial but realistic database
 - A large set of test and training recordings
 - We first made direct-microphone office recordings
 - We later used telephone recordings from the publicly available *Macrophone* corpus
 - Now, we and our customers have begun conducting on-line performance tests

Some statistics on our task

- □ 244,947,552 addresses in the database
- □ 245,000 distinct words in the vocabulary
- □ 3,220 cities, with 2,809 distinct names
- a ~1 million distinct street names
- B8,800 distinct last names
- □ 4,275 female & 1,219 male first names
- □ ~50 million distinct person names
- □ 49,384 "James Smith"s 39,638 "Mary Smith"s

Generating artificial but realistic person names

- Frequencies of first and last names taken from the US 1990 census
- Equal numbers of male and female names generated by random combination of first and second names, reflecting the published frequencies

Name & Address Speech Corpus

Corpus collected in the US

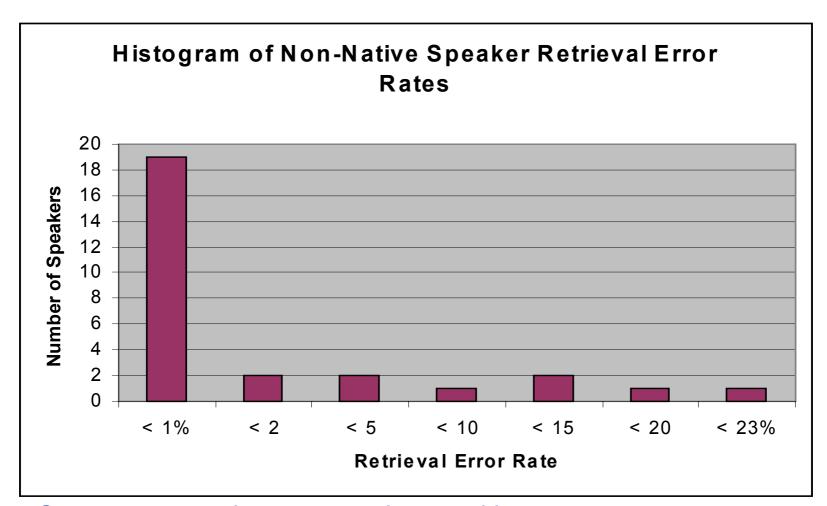
- speakers from all major US regions
- Each of the 181 speakers recorded
 between 100 and 200 names and addresses
 presented as if on an envelope
- □ 59 speakers held back for testing
 - Only used once

Recognition Test Results against 245 million items

- 99.8% of the 7800 names and addresses were completely correct (with no rejection)
- □ Mean response time was **0.66 sec**
- □ Tests carried out on a standard PC:
 - 2.4GHz P4 with 256MB of 266MHz RAM (only 40 MB of RAM actually used)
- So large-scale name and address recognition is more than feasible

Non-native speaker tests

- Performance with most non-native speakers was as good as with native American English speakers
 - Our particular technical approach makes us more tolerant to variation in pronunciation


Test details

First Languages of the Non-Native U.S. English speakers

English (not USA)	6
Mandarin	3
Spanish (N. Am)	3
Arabic	2
German	2
Hindi	2
Korean	2
Bulgarian	1
Burmese	1
Czech	1
Hebrew	1
Japanese	1
Polish	1
Spanish (Spain)	1
Yoruba	1

Test details

Results with the 28 Non-Native Speakers

So most non-natives got good recognition accuracy; 67% had <1% errors; 82% had <5% errors; those with high percentage error rates are barely comprehensible to human listeners.

Address recognition: without names or house numbers ~ 2.5 million addresses needed for *e.g.* route planning applications

	Errors	Rejections
Top-choice error rate	2.34%	0%
Top-choice error rate with rejection	0.70%	6.9%
Top-3 error rate	1.09%	0%
Response time: 1.33 sec.		

Tests with Telephone Speech

- Indicate that accuracy remains high
 - With office recordings restricted to telephone bandwidth, accuracy = 99.66%
 - With telephone recordings from the public Macrophone corpus, with name and address concatenated from separate utterances plus a telephone number in place of ZIP code, accuracy = 99.34%
 - In live tests errors are rare

Single-utterance vs. Multi-utterance (dialogue-based) approaches

> Usual interaction with dialogue:

- Which state do you live in?
 - Connecticut
- Which city?
 - Greenwich
- Speak the street & house no.
 - 143 Main Street
- What is your last name?
 - Bawson
- Please spell that name
 - B A W S O N
- Did you say "Dawson"?
- And so on...

- Interaction without dialogue:
 - What is your name and address?
 - James Bawson 143 Main Street Greenwich Connecticut 06830
 - Thank you

Much quicker!

Single-Utterance Name & Address Input is User-Friendly

- Many automatic speech recognition systems are more convenient <u>for the service provider</u>
- Taking down a name and address automatically is also more convenient for the user because:
 - It's faster
 - More accurate
 - No need to spell names

Former Head of BT's Speech Processing Research Department, Denis Johnston, said:

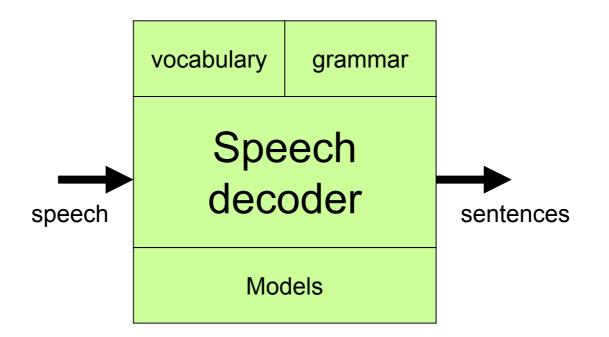
"This level of performance may permanently change how application designers approach dialogue design.

"Quite simply, it makes speech recognition systems far more attractive to users."

Example of an Immediate Application

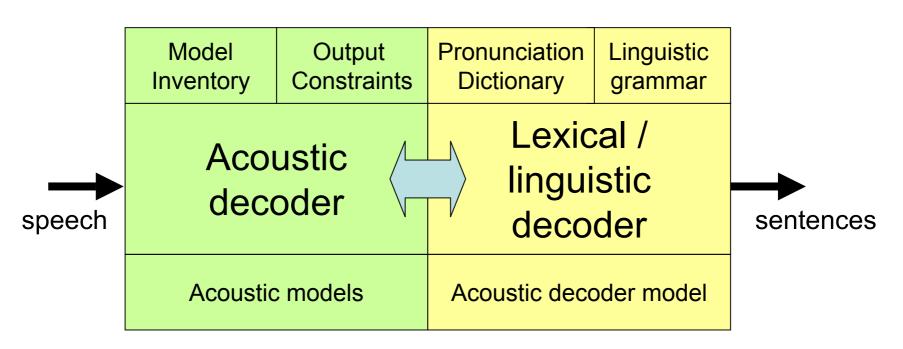
- A traveller has had her credit card stolen
- She needs to get it stopped immediately, but has no record of its number
- □ She identifies herself by her name and address
- Currently this has to be taken down (slowly) by a human operator
- Finance companies say there would be large savings if only a fraction of such calls could be handled automatically

Immediate Applications in General


- Obvious applications:
 - In call centres
 - In road-vehicle navigation systems
 - In parcel sorting
 - In financial info. and transaction processing
- But also some slightly less obvious ones not involving addresses...
 - In consumer entertainment for selecting music or video selections, artists, satellite TV channels and programmes, *etc*.

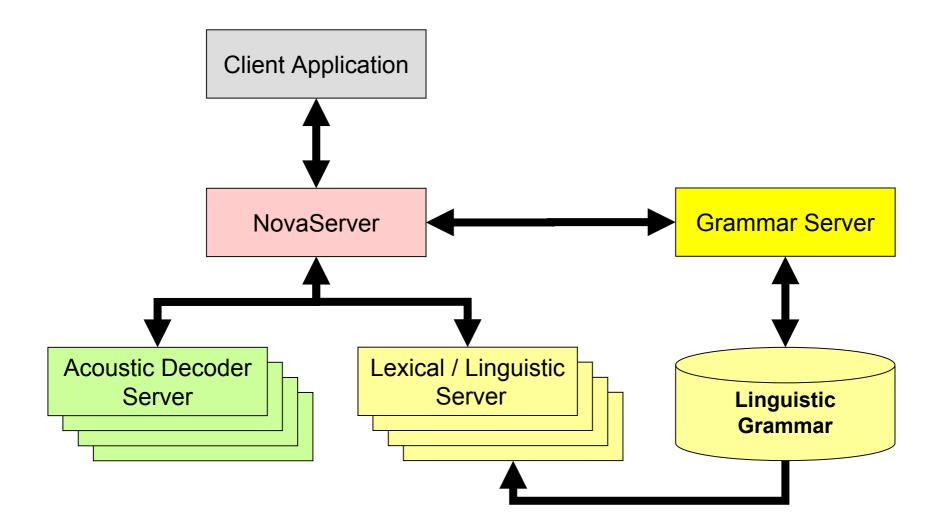
How have we achieved these capabilities?

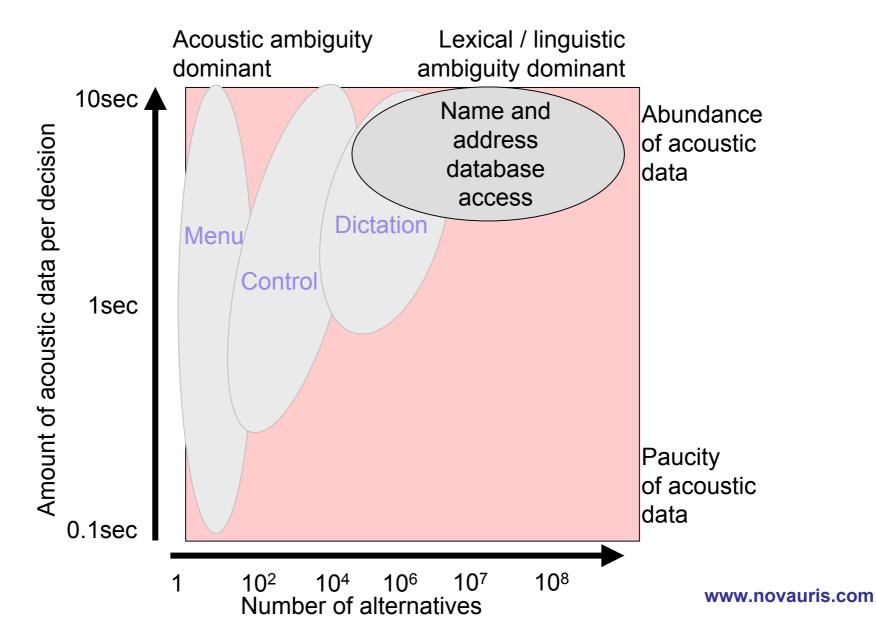
- By exploiting redundancy in the grammar, but also:
 - □ With special, novel database search techniques
 - With special, novel speech recognition techniques, employing more speech knowledge than conventional systems
- Patent applications submitted on both sets of techniques


Our basic architecture is also unconventional...

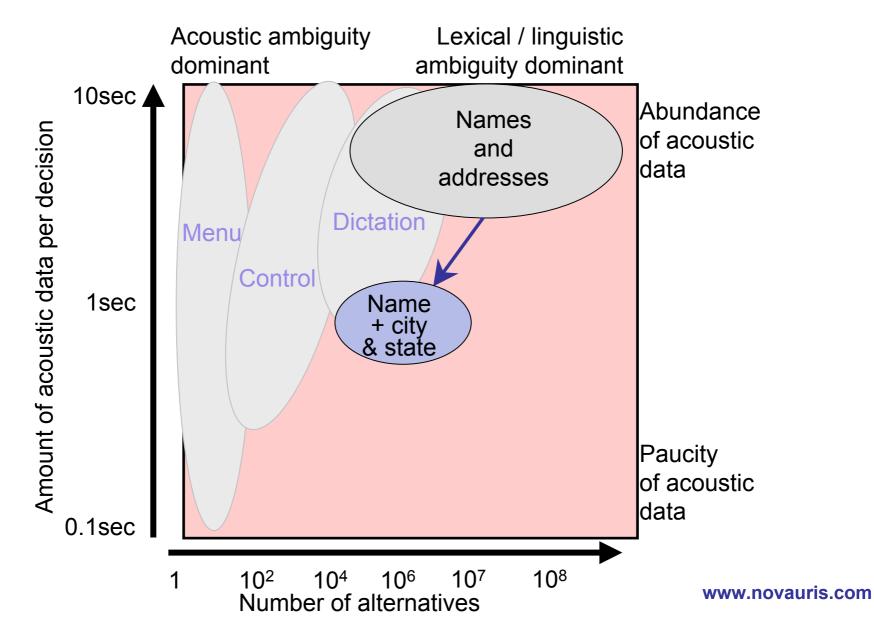
Conventional Speech Recognition

The acoustic, lexical and linguistic modelling is done entirely within the decoder

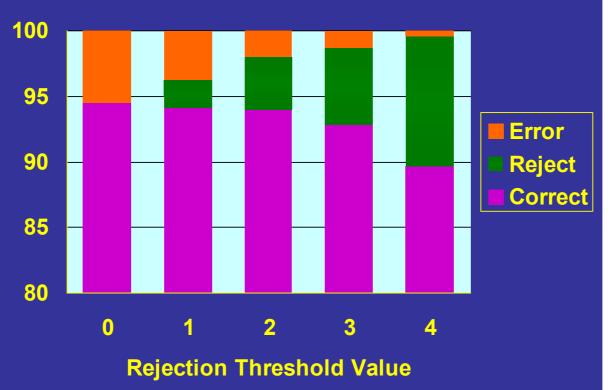

Novauris' System


 Different modules are used for the acoustic modelling and the lexical / linguistic modelling

- A more memory efficient lexical vocabulary is possible
- A long-range linguistic grammar is possible


The Scaleable Architecture

Speech Task Problem Space


Moving to shorter utterances

Telephone Tests on name + city & state 100,000 items

<u>Confidence measures</u> for rejection are needed to:

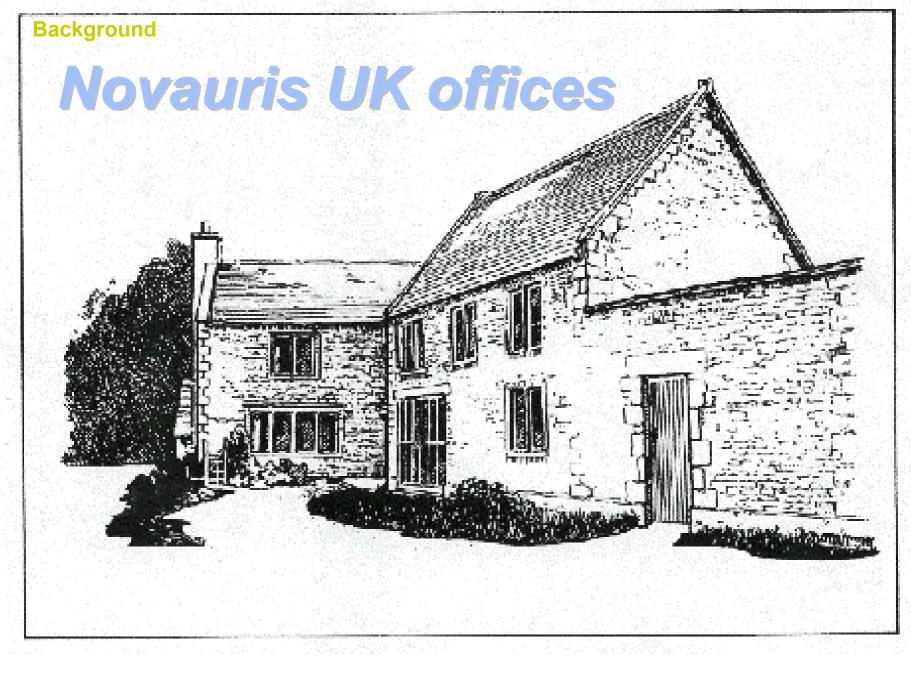
- Detect inputs that are not in the database
- Detect possible errors in database matches
 - Up to threshold value 2 or 3, almost all rejected items would otherwise have been errors

In Summary

- The technology needed to abolish user-unfriendly index numbers is already available
 - Though it won't happen right away
- In the meantime, there are many uses for automatic identification of (names and) addresses
- The technology providing this capability has potential in other applications

Please try the demonstrations on the Novauris stand (16)

- 245 million names & addresses
 - US English, direct input
- □ 24,000 names + city & state
 - US English, direct input
- Also, possibility of telephone demo
 - US English demos as 1 & 2
 - Plus name & address demo for British English


Appendix: Brief Background on Novauris UK

www.novauris.com

+44 1242 678581

Where Novauris is located

How Novauris Began

Novauris (= "new ear") founded in March 2002

- to create a new generation of ASR capabilities and applications
- initially specialised on spoken access to large databases
- first public demonstration, April 2003
- Initial funding provided by Jim Baker, who:
 - With Janet Baker founded *Dragon Systems, which:*
 - Pioneered & led the market in general-purpose dictation products
 - Grew to ~380 people, revenue ~\$70M
 - Profitable throughout Jim's 15-yr reign
 - 2 years later, brought down by L&H crash

 Novauris is currently an independent, privately held UK company Background

The UK Team

- Small, cohesive team of experienced speech technologists
 - + 1 administrator/book-keeper
 - Headed by John Bridle & Melvyn Hunt
 - Most have PhDs
- Largely comprise the former Dragon Systems UK R&D team

Dragon Systems UK R&D

- Worked on speech recognition over the telephone and in cars
- Independently profitable unit
 - Headed by John Bridle & Melvyn Hunt
- Developed C-REC speech recognizer
 - Suitable for noise-robust embedded and multi-channel telephone applications
 - Applications in: US & UK English, German, French, Japanese...
 - Sold to Visteon
 - including command & control and navigation
 - Now fitted in *Jaguar* cars and others
 - Subsequently licensed by SpeechWorks (now Scansoft)

Team details

Dr James Baker

- Chairman of Novauris
- Initial investor
- In Mathematician by training (Princeton)
- □ Introduced *HMM*s to speech recognition
- Co-Founder & Chairman of Dragon Systems
- Now lives in Florida

Team details

Dr Melvyn Hunt

- □ Joint MD Functions as CEO
- Physicist by training (Oxford)
- Honorary Fellow, Dept of Phonetics and Linguistics, University College London
- Introduced LDA for acoustic representations and MLLR for speaker adaptation.
- His team in Canada developed the world's first helicopter piloted by voice
- Introduced what may be the world's first commercial telephone ASR system with barge-in (*Flightline* 1991)
 - While Chief Scientist, Marconi Speech & Information Systems
- Served on the IEEE Speech Technical Committee

John Bridle, FIA

- □ Joint MD Functions as CTO
- Pioneer in using dynamic programming time warping in the West (early 70s).
- Provided the algorithmic design for the world's first commercial truly continuous speech recognizer – *Logos* (early 80s).
- □ Pioneer in using neural networks for speech recognition (mid 80s).
- □ Formerly head of the UK government's Joint Speech Research Unit
- Jointly headed Dragon Systems UK
- Fellow of the Institute of Acoustics
- Served on IEEE Speech Technical committee